Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.312
Filtrar
1.
J Colloid Interface Sci ; 664: 309-318, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38479267

RESUMO

Although lots of nanomaterials modified anodes have been reported to improve the bacterial attachment and extracellular electron transfer (EET) in microbial fuel cells (MFCs), the lack of a three dimensional (3D) conductive and capacitive network severely limited MFCs performance. In this work, 3D conductive networks derived from mucor mycelia were grown on carbon cloth (CC), and capacitive FeMn phosphides/oxides were further anchored on these 3D networks by electrochemical deposition (denoted as FeMn/CMM@CC) to simultaneously address the above challenges. As a result, the multivalent metal active sites were evenly distributed on 3D conductive network, which favored the enrichment of exoelectrogens, mass transport and EET. Consequently, the as-prepared FeMn/CMM@CC anode displayed accumulated charge of 131.4C/m2, higher than bare CC. Meanwhile, FeMn/CMM@CC anode substantially promoted flavin excretion and the amounts of nano conduits. The abundance of Geobacter was 63 % on bare CC, and greatly increased to 83 % on FeMn/CMM@CC. MFCs equipped by FeMn/CMM@CC anode presented the power density of 3.06 W/m2 and coulombic efficiency (29.9 %), evidently higher than bare CC (1.29 W/m2, 7.3 %), and the daily chemical oxygen demand (COD) removal amount also increased to 92.6 mg/L/d. This work developed a facile method to optimize the abiotic-biotic interface by introducing 3D conductive and capacitive network, which was proved to be a promising strategy to modify macro-porous electrodes.


Assuntos
Fontes de Energia Bioelétrica , Fontes de Energia Bioelétrica/microbiologia , Elétrons , Condutividade Elétrica , Carbono/química , Transporte de Elétrons , Eletrodos , Eletricidade
2.
Chemosphere ; 354: 141754, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38508464

RESUMO

The emission of recalcitrant wastewater poses serious threats to the environment. In this study, an integrated approach combining electrocatalytic oxidation (EC) for pretreatment and microbial fuel cells (MFC) for thorough pollutant degradation is proposed to ensure efficient degradation of target substances, with low energy input and enhanced bioavailability of refractory organics. When phenol was used as the pollutant, an initial concentration of 2000 mg/L phenol solution underwent EC treatment under constant current-exponential attenuation power supply mode, resulting in a COD removal rate of 54.53%, and a phenol degradation rate of 99.83%. Intermediate products such as hydroquinone and para-diphenol were detected in the solution. After subsequent MFC treatment, only minor amounts of para-diphenol were left, and the degradation rate of phenol and its intermediate products reached 100%, with an output power density of 110.4 mW m-2. When coal chemical wastewater was used as the pollutant, further examination of the EC-MFC system performance showed a COD removal rate of 49.23% in the EC section, and a 76.21% COD removal rate in the MFC section, with an output power density of 181.5 mW m-2. Microbiological analysis revealed typical electrogenic bacteria (such as Pseudomonas and Geobacter), and specific degrading functional bacteria (such as Stenotrophomonas, Delftia, and Brevundimonas). The dominant microbial communities and their proportions adapted to environmental changes in response to the variation of carbon sources.


Assuntos
Fontes de Energia Bioelétrica , Poluentes Ambientais , Fontes de Energia Bioelétrica/microbiologia , Águas Residuárias , Eletricidade , Fenol , Fenóis , Eletrodos
3.
Environ Sci Pollut Res Int ; 31(12): 18750-18764, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38349489

RESUMO

Benthic microbial fuel cell (BMFC) is the most promising type of bioelectrochemical approach for producing electrons and protons from natural organic waste. In the present work, a single-chamber BMFC was used, containing sago (Cycas revoluta) waste as the organic feed for microorganisms. The local wastewater was supplemented with heavy metal ions (Pb2+, Cd2+, Cr3+, Ni2+, Co2+, Ag+, and Cu2+) and used as an inoculation source to evaluate the performance of BMFC against the toxic metal remediations. According to the experimental results, the maximum power density obtained was 42.55 mW/m2 within 25 days of the BMFC operation. The maximum remediation efficiency of the metal ion removal from the wastewater was found to be 99.30% (Ag+). The conductive pili-type bacteria species (Acinetobacter species, Leucobacter species, Bacillus species, Proteus species. and Klebsiella pneumoniae) were found in the present study during isolation and identification processes. This study's multiple parameter optimization revealed that pH 7 and room temperature is the best condition for optimal performance. Finally, this study included the mechanism, future recommendations, and concluding remarks.


Assuntos
Fontes de Energia Bioelétrica , Cycas , Metais Pesados , Fontes de Energia Bioelétrica/microbiologia , Águas Residuárias , Cycas/metabolismo , Metais Pesados/metabolismo , Bactérias/metabolismo , Eletrodos , Eletricidade
4.
Bioresour Technol ; 395: 130378, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38281546

RESUMO

A novel manganese cobalt metal-organic framework based carbon nanofiber electrode (MnCo/CNF) was prepared and used as microbial fuel cell (MFC) anode. Pyrite was introduced into the anode chamber (MnCoPy_MFC). Synergistic function between pyrite and MnCo/CNF facilitated the pollutants removal and energy generation in MnCoPy_MFC. MnCoPy_MFC showed the highest chemical oxygen demand removal efficiency (82 ± 1%) and the highest coulombic efficiency (35 ± 1%). MnCoPy_MFC achieved both efficient electricity generation (maximum voltage: 658 mV; maximum power density: 3.2 W/m3) and total antimony (Sb) removal efficiency (99%). The application of MnCo/CNF significantly enhanced the biocatalytic efficiency of MnCoPy_MFC, attributed to its large surface area and abundant porous structure that provided ample attachment sites for electroactive microorganisms. This study revealed the synergistic interaction between pyrite and MnCo/CNF anode, which provided a new strategy for the application of composite anode MFC in heavy metal removal and energy recovery.


Assuntos
Fontes de Energia Bioelétrica , Ferro , Nanofibras , Compostos de Nitrosoureia , Sulfetos , Carbono , Manganês , Antimônio , Cobalto , Fontes de Energia Bioelétrica/microbiologia , Eletricidade , Eletrodos , Bactérias/química
5.
Chemosphere ; 350: 141105, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38171394

RESUMO

The efficient biodegradation of volatile chlorinated hydrocarbons using microbial fuel cells (MFCs) offers a feasible approach for purifying waste gas and alleviating energy crises. However, power generation is limited by poor pollutant biodegradation and slow electron transfer. The bifunctional bacterium Acinetobacter sp. HY-99C was screened and used to improve the performance of a conventional MFC. The inoculation of strain HY-99C into the conventional MFC promoted the formation of a compact biofilm with high metabolic activity and an enriched bifunctional genus (Acinetobacter), which resulted in the accelerated decomposition of chlorinated aromatic compounds into biodegradable organic acids. This led to efficient chlorobenzene removal and power generation from the MFC, with a chlorobenzene elimination capacity of 70.8 g m-3 h-1 and power density of 89.6 mW m-2, which are improved over those of previously reported MFCs. This study provides novel insights into enhancing pollutant removal and power generation in MFCs.


Assuntos
Fontes de Energia Bioelétrica , Poluentes Ambientais , Fontes de Energia Bioelétrica/microbiologia , Gases , Bactérias , Clorobenzenos , Eletrodos , Eletricidade
6.
Bioelectrochemistry ; 156: 108618, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37988978

RESUMO

Microbial Fuel Cells (MFC) convert energy stored in chemicals into electrical energy thanks to exoelectrogenic microorganisms who also play a crucial role in geochemical cycles in their natural environment, including that of iron. In this study, we investigated paleomarine sediments as inoculum for bioanode development in MFCs. These sediments were formed under anoxic conditions ca. 113 million years ago and are rich in clay minerals, organic matter, and iron. The marlstone inoculum was incubated in the anolyte of an MFC using acetate as the added electron donor and ferricyanide as the electron acceptor in the catholyte. After seven weeks of incubation, the current density increased to 0.15 mA.cm-2 and a stable + 700 mV open circuit potential was reached. Community analysis revealed the presence of two exoelectrogenic bacterial genera, Geovibrio and Geobacter. Development of electroactive biofilms was correlated to bulk chemical transformations of the sediment inoculum with an increase in the Fe(II) to Fetotal ratio. Comparisons to sediments sterilized prior to inoculation confirmed that bioanode development derives from the native microbiota of these paleomarine sediments. This study illustrates the feasibility of developing exoelectrogenic biofilms from iron-rich marlstone and has implications for the role of such bacteria in broader paleoenvironmental phenomena.


Assuntos
Fontes de Energia Bioelétrica , Ferro , Eletrodos , Bactérias , Eletricidade , Fontes de Energia Bioelétrica/microbiologia , Biofilmes
7.
Bioresour Technol ; 393: 130032, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38013038

RESUMO

This study comparatively investigated the exoelectrogenic utilization and hydrogen conversion of major dark fermentation products (acetate, propionate, butyrate, lactate, and ethanol) from organic wastes in dual-chamber microbial electrolysis cells (MECs) alongside their mixture as a simulated dark fermentation effluent (DFE). Acetate-fed MECs showed the highest hydrogen yield (1,465 mL/g chemical oxygen demand), near the theoretical maximum yield, with the highest coulombic efficiency (105%) and maximum current density (7.9 A/m2), followed by lactate-fed, propionate-fed, butyrate-fed, mixture-fed, and ethanol-fed MECs. Meanwhile, the highest hydrogen production rate (514 mL/L anolyte∙d) was observed in ethanol-fed MECs despite their lower coulombic efficiency. Butyrate was the least favored substrate, followed by propionate, leading to significantly delayed startup and reaction. The active anodic microbial community structure varied considerably among the MECs utilizing different substrates, particularly between Geobacter and Acetobacterium dominance. The results highlight the substantial effect of the DFE composition on its utilization and current-producing bioanode development.


Assuntos
Fontes de Energia Bioelétrica , Propionatos , Fermentação , Hidrogênio/química , Fontes de Energia Bioelétrica/microbiologia , Eletrólise/métodos , Acetatos , Butiratos , Lactatos , Etanol
8.
Bioprocess Biosyst Eng ; 47(1): 105-117, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38092977

RESUMO

The focus of this study is to develop a high-performance anode material for microbial fuel cells (MFCs). PEDOT:PSS and nitrogen-modified MXene were combined to create a hydrogel composite material called PPNM, which was drop-cast onto carbon felt (CF) as the MFCs anode. The PPNM exhibited a higher peak power density of 4.78 W m-2, an increase of 332% compared to the CF anode. It is worth noting that the PPNM Hydrogel maintains its rough and porous structure, providing favorable sites for bacterial colonization. The introduction of N-MXene has improved the electrochemical performance of the hydrogel, particularly impacting the mediated electron transfer process. Microbial community analysis revealed the presence of more electrochemically active species on the PPNM anode. These findings highlight the potential of PPNM hydrogel and pave the way for similar strategies in achieving high-performance anodes in MFCs.


Assuntos
Fontes de Energia Bioelétrica , Hidrogéis , Elétrons , Fontes de Energia Bioelétrica/microbiologia , Carbono/química , Eletrodos
9.
Sci Total Environ ; 912: 169545, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38159753

RESUMO

Using the bio-electrochemical methods for the restoration of high algae sediments is full of potential and challenges. How to promote extracellular electron transfer (EET) process in microbial fuel cells (MFC) is the key bottleneck. The study had explored the potential application of magnetite on accelerating electron transfer for improving the output of MFC and sediment pollution remediation. The results indicated that the organic matter degradation rate showed a remarkable increase of 27.45 %, and the voltage output was approximately 1.68 times higher compared to the MFC configured with regular sediment. Abundant electroactive bacteria (EABs), such as Geobacter and Burkholderiaceae, and fermentative bacteria were responsible for these results, accompanied by the enhanced fluorescence of humic substances (HS), increased concentration and activity of cytochrome C (25.05 % and 21.12 %), as well as elevated extracellular polymeric substance content. Moreover, the intrinsic EET mechanisms among Fe-oxides, HS, and EABs were explored. According to the electrochemical analysis and substance transformation, the EET process involved four stages: magnetite-enhanced direct electron transfer via strong conductivity, iron respiration mediating electron transfer to the electrode, the model quinone substance acting as an electron shuttle facilitating EET and iron reduction, and iron cycling mediating electron transfer. This study provides an effective strategy for pollution remediation in algal-rich sediment, which was beneficial for the harmless treatment and resource utilization of both algae and sediment, simultaneously.


Assuntos
Fontes de Energia Bioelétrica , Fontes de Energia Bioelétrica/microbiologia , Óxido Ferroso-Férrico , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Elétrons , Bactérias/metabolismo , Ferro/metabolismo , Eletrodos
10.
Chemosphere ; 349: 140902, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38096993

RESUMO

Tetracycline antibiotics are widely used in veterinary medicine, human therapy and agriculture, and their presence in natural water raises environmental concerns. In this study, more than 94% of tetracycline hydrochloride (TCH) could be rapidly degraded within 48 h in polarity-inverted microbial fuel cells. The electrochemically active bacteria had the best electrochemical performance at 1 mg/L of TCH with the minimum internal resistance of 77.38 Ω. The electron-rich functional groups of TCH were continuously attacked and finally degradated into small molecules in three possible degradation pathways. Microbial community structure analysis showed that Comamonas and Shinella were enriched at the electrode as polarity-inverted bacteria. Genomic analysis showed that both direct and indirect electron transfer participated in the degradation of TCH in polarity-inverted microbial fuel cell (MFC) and the functional genes related to electrical conductivity in polarity-inverted MFC were more enriched on the electrode surface than non-polarity-inverted MFC. This study can facilitate further investigations about the biodegradation of TCH in polarity-inverted microbial fuel cell.


Assuntos
Fontes de Energia Bioelétrica , Rhizobiaceae , Humanos , Tetraciclina/farmacologia , Fontes de Energia Bioelétrica/microbiologia , Antibacterianos/química , Transporte de Elétrons , Rhizobiaceae/metabolismo
11.
Sci Rep ; 13(1): 20184, 2023 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978236

RESUMO

Hexavalent chromium [Cr(VI)] is one of the most carcinogenic and mutagenic toxins, and is commonly released into the environemt from different industries, including leather tanning, pulp and paper manufacturing, and metal finishing. This study aimed to investigate the performance of dual chamber microbial fuel cells (DMFCs) equipped with a biocathode as alternative promising remediation approaches for the biological reduction of hexavalent chromium [Cr(VI)] with instantaneous power generation. A succession batch under preliminary diverse concentrations of Cr(VI) (from 5 to 60 mg L-1) was conducted to investigate the reduction mechanism of DMFCs. Compared to abiotic-cathode DMFC, biotic-cathode DMFC exhibited a much higher power density, Cr(VI) reduction, and coulombic efficiency over a wide range of Cr(VI) concentrations (i.e., 5-60 mg L-1). Furthermore, the X-ray photoelectron spectroscopy (XPS) revealed that the chemical functional groups on the surface of biotic cathode DMFC were mainly trivalent chromium (Cr(III)). Additionally, high throughput sequencing showed that the predominant anodic bacterial phyla were Firmicutes, Proteobacteria, and Deinococcota with the dominance of Clostridiumsensu strict 1, Enterobacter, Pseudomonas, Clostridiumsensu strict 11 and Lysinibacillus in the cathodic microbial community. Collectively, our results showed that the Cr(VI) removal occurred through two different mechanisms: biosorption and bioelectrochemical reduction. These findings confirmed that the DMFC could be used as a bioremediation approach for the removal of Cr(VI) commonly found in different industrial wastewater, such as tannery effluents. with simultaneous bioenergy production.


Assuntos
Fontes de Energia Bioelétrica , Fontes de Energia Bioelétrica/microbiologia , Cromo/química , Bactérias/genética , Águas Residuárias
12.
Int. microbiol ; 26(4): 741-756, Nov. 2023. ilus
Artigo em Inglês | IBECS | ID: ibc-227467

RESUMO

Photosynthetic microbial fuel cell (PMFC) is a novel technology, which employs organic pollutants and organisms to produce electrons and biomass and capture CO2 by bio-reactions. In this study, a new PMFC was developed based on Synechococcus sp. as a biocathode, and dairy wastewater was used in the anode chamber. Different experiments including batch feed mode, semi-continuous feed mode, Synechococcus feedstock to the anode chamber, Synechococcus-Chlorella mixed system, the feedstock of treated wastewater to the cathode chamber, and use of extra nutrients in the anodic chamber were performed to investigate the behavior of the PMFC system. The results indicated that the PMFC with a semi-continuous feed mode is more effective than a batch mode for electricity generation and pollutant removal. Herein, maximum power density, chemical oxygen demand removal, and Coulombic efficiency were 6.95 mW/m2 (450 Ω internal resistance), 62.94, and 43.16%, respectively, through mixing Synechococcus sp. and Chlorella algae in the batch-fed mode. The maximum nitrate and orthophosphate removal rates were 98.83 and 68.5%, respectively, wherein treated wastewater in the anode was added to the cathode. No significant difference in Synechococcus growth rate was found between the cathodic chamber of PMFC and the control cultivation cell. The heating value of the biocathode biomass at maximum Synechococcus growth rate (adding glucose into the anode chamber) was 0.2235 MJ/Kg, indicating the cell’s high ability for carbon dioxide recovery. This study investigated not only simultaneous bioelectricity production and dairy wastewater in a new PMFC using Synechococcus sp. but also studied several operational parameters and presented useful information about their effect on PMFC performance.(AU)


Assuntos
Fontes de Energia Bioelétrica/microbiologia , Synechococcus , Eletricidade , Chlorella/microbiologia , Poder Calorífico , Biomassa , Microbiologia , Águas Residuárias/microbiologia
13.
Food Chem Toxicol ; 181: 114058, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37788762

RESUMO

Methyl Orange, an azo dye, is a widely used colouring agent in the textile industry. The study aimed to investigate the efficiency of bioremediating bacteria in degrading methyl orange. Escherichia coli (E. coli), a Methyl Orange-degrading bacterium, was isolated from cow dung and its biochemical properties were analysed using 16S rRNA sequencing, and MALDI-TOF MS. A pre-cultured strain of Pseudomonas aeruginosa was co-cultured with E. coli in 1:1 ration in a microbial fuel cell (MFC) for simultaneous electricity production and methyl orange degradation. The degradation was combined with biological wastewater treatment at varying Methyl Orange concentrations, and the electrochemical characteristics were analysed through polarisation study, cyclic voltammetry, and electrochemical impedance spectroscopy. The impact of parameters such as anolyte pH, dye concentration, incubation time, and substrate concentrations were also studied. This study confirmed E. coli as an effective methyl orange degrading bacteria with a maximum % degradation efficiency of 98% after 48 h incubation at pH 7.0. The co-culture of isolated microorganisms at 250 mg/L of methyl orange concentration showed a maximum power density 6.5 W/m3. Further, anode modification with Fe2O3 nanoparticles on the anode surface enhanced power production to 11.2 W/m3, an increase of 4.7 W/m3.


Assuntos
Fontes de Energia Bioelétrica , Fontes de Energia Bioelétrica/microbiologia , Técnicas de Cocultura , RNA Ribossômico 16S/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Compostos Azo/química , Bactérias/metabolismo , Eletrodos
14.
Bioresour Technol ; 390: 129857, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37852505

RESUMO

This study aimed to examine the microbial degradation of xylan through Bacillus sp. isolated from wastewater. Co-culture of Bacillus licheniformis strain and MTCC-8104 strain of Shewanella putrefaciens were employed in a microbial fuel cell (MFC) to facilitate energy production simultaneous xylan degradation under optimum conditions. Electrochemical properties of MFC and degradation analysis were used to validate xylan degradation throughout various experimental parameters. Degradation of the optimal xylan concentration using co-culture, resulting in a power density of 7.8 W/m3, the anode surface was modified with bamboo-derived biochar in order to increase power density under the same operational condition. Under optimum circumstances, increasing the anode's surface area boosted electron transport and electro-active biofilm growth, resulting in a higher power density of 12.9 W/m3. Co-culture of hydrolyzing and electro-active bacteria was found beneficial for xylan degradation and anode modifications enhance power output while microbial degradation.


Assuntos
Fontes de Energia Bioelétrica , Fontes de Energia Bioelétrica/microbiologia , Xilanos , Técnicas de Cocultura , Eletrodos , Eletricidade
15.
N Biotechnol ; 78: 131-140, 2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-37875210

RESUMO

Microbial Fuel Cells (MFCs) transform organic matter into electricity through microbial electrochemical reactions catalysed on anodic and cathodic half-cells. Terrestrial MFCs (TMFCs) are a bioelectrochemical system for bioelectricity production as well as soil remediation. In TMFCs, the soil is the ion-exchange electrolyte, whereas a biofilm on the anode oxidises organic matter through electroactive bacteria. Little is known of the overall microbial community composition in a TMFC, which impedes complete exploitation of the potential to generate energy in different soil types. In this context, an experiment was performed to reveal the prokaryotic community structure in single chamber TMFCs with soil in the presence and absence of a municipal waste compost (3% w/v). The microbial community was assessed on the anode and cathode and in bulk soil at the end of the experiment (54 days). Moreover, TMFC electrical performance (voltage and power) was also evaluated over the experimental period, varying the external resistance to improve performance. Compost stimulated soil microbial activity, in line with a general increase in voltage and power. Significant differences were observed in the microbial communities between initial soil conditions and TMFCs, and between the anode, cathode and bulk soil in the presence of the compost. Several electroactive genera (Bacillus, Fulvivirga, Burkholdeira and Geobacter) were found at the anode in the presence of compost. Overall, the use of municipal waste compost significantly increased the performance of the MFCs in terms of electrical power and voltage generated, not least thanks to the selective pressure towards electroactive bacteria on the anode.


Assuntos
Fontes de Energia Bioelétrica , Compostagem , Fontes de Energia Bioelétrica/microbiologia , Eletricidade , Bactérias , Eletrodos , Solo
16.
Water Res ; 246: 120677, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37827037

RESUMO

Hydrophobic volatile organic sulfur compounds (VOSCs) are frequently found during sewage treatment, and their effective management is crucial for reducing malodorous complaints. Microbial fuel cells (MFC) are effective for both VOSCs abatement and energy recovery. However, the performance of MFC on VOSCs remains limited by the mass transfer efficiency of MFC in aqueous media. Inspired by two-phase partitioning biotechnology, silicone oil was introduced for the first time into MFC as a non-aqueous phase (NAP) medium to construct two-phase partitioning microbial fuel cell (TPPMFC) and augment the mass transfer of target VOSCs of propanethiol (PT) in the liquid phase. The PT removal efficiency within 32 h increased by 11-20% compared with that of single-phase MFC, and the coulombic efficiency of TPPMFC (11.01%) was 4.32-2.68 times that of single-phase MFC owing to the fact that highly active desulfurization and thiol-degrading bacteria (e.g., Pseudomonas, Achromobacter) were attached to the silicone oil surface, whereas sulfur-oxidizing bacteria (e.g., Thiobacillus, Commonas, Ottowia) were dominant on the anodic biofilm. The outer membrane cytochrome-c content and NADH dehydrogenase activity improved by 4.15 and 3.36 times in the TPPMFC, respectively. The results of metagenomics by KEGG and COG confirmed that the metabolism of PT in TPPMFC was comprehensive, and that the addition of a NAP upregulates the expression of genes related to sulfur metabolism, energy generation, and amino acid synthesis. This finding indicates that the NAP assisted bioelectrochemical systems would be promising to solve mass-transfer restrictions in low solubility contaminates removal.


Assuntos
Fontes de Energia Bioelétrica , Fontes de Energia Bioelétrica/microbiologia , Óleos de Silicone , Compostos de Sulfidrila , Enxofre , Biofilmes , Eletrodos , Eletricidade
17.
Environ Sci Pollut Res Int ; 30(49): 108176-108187, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37749470

RESUMO

Electroactive biofilms (EABs) have aroused wide concern in waste treatment due to their unique capability of extracellular electron transfer with solid materials. The combined effect of different operating conditions on the formation, microbial architecture, composition, and metabolic activity of EABs is still unknown. In this study, the impact of three different factors (anode electrode, substrate concentration, and resistance) on the acclimation and performance of EABs was investigated. The results showed that the shortest start-up time of 127.3 h and highest power density of 0.84 W m-2 were obtained with carbon brush as electrode, low concentration of substrate (1.0 g L-1), and 1000 Ω external resistance (denoted as N1). The EABs under N1 condition also represented strongest redox capacity, lowest internal resistance, and close arrangement of bacteria. Moreover, the EABs cultured under different conditions both showed similar results, with direct electron transfer (DET) dominated from EABs to anode. Microbial community compositions indicated that EABs under N1 condition have lowest diversity and highest abundance of electroactive bacteria (46.68%). Higher substrate concentration (3.0 g L-1) promoted the proliferation of some other bacteria without electroactivity, which was adverse to EABs. The metabolic analysis showed the difference of genes related to electron transfer (cytochrome C and pili) and biofilm formation (xap) of EABs under different conditions, which further demonstrated the higher electroactivity of EABs under N1. These results provided a comprehensive understanding of the effect of different operating conditions on EABs including biofilm formation and electrochemical activity.


Assuntos
Fontes de Energia Bioelétrica , Geobacter , Geobacter/metabolismo , Biofilmes , Oxirredução , Transporte de Elétrons , Eletrodos , Bactérias , Aclimatação , Fontes de Energia Bioelétrica/microbiologia
18.
Environ Pollut ; 337: 122576, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37722473

RESUMO

Bioelectrochemical system is a prospective strategy in organic-contaminated groundwater treatment, while few studies clearly distinguish the mechanisms of adsorption or biodegradation in this process, especially when dense biofilm is formed. This study employed a single chamber microbial electrolysis cell (MEC) with two three-dimensional electrodes for removing a typical organic contaminant, 2,4-dichlorophenol (DCP) from groundwater, which inoculated with anaerobic bacteria derived from sewage treatment plant. Compared with the single biodegradation system without electrodes, the three-dimensional electrodes with a high surface enabled an increase of alpha diversity of the microbial community (increased by 52.6% in Shannon index), and provided adaptive ecological niche for more bacteria. The application of weak voltage (0.6 V) furtherly optimized the microbial community structure, and promoted the aggregation of microorganisms with the formation of dense biofilm. Desorption experiment proved that the contaminants were removed from the groundwater mainly via adsorption by the biofilm rather than biodegradation, and compared with the reactor without electricity, the bioelectrochemical system increased the adsorption capacity from 50.0% to 74.5%. The aggregated bacteria on the surface of electrodes were mainly dominated by Delftia tsuruhatensis (85.0%), which could secrete extracellular polymers and has a high adsorption capacity (0.30 mg/g electrode material) for the contaminants. We found that a bioelectrochemical system with a three-dimensional electrode could stimulate the formation of dense biofilm and remove the organic contaminants as well as their possible more toxic degradation intermediates via adsorption. This study provides important guidance for applying bioelectrochemical system in groundwater or wastewater treatment.


Assuntos
Fontes de Energia Bioelétrica , Delftia , Eletricidade , Fenóis , Biofilmes , Eletrodos , Fontes de Energia Bioelétrica/microbiologia
19.
J Environ Manage ; 346: 119048, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37742561

RESUMO

To increase the colonization of electroactive bacteria and accelerate the rate of extracellular electron transfer, a simple coated anode of microbial fuel cell was designed. Here, we took advantage of vanadium nitride (VN) particles to modify the carbon cloth (VN@CC). Compared with bare carbon cloth, the designed VN@CC bioanodes exhibited a larger electrochemically active area, better biocompatibility, and smaller charge transfer impedance. The MFC with VN@CC bioanodes achieved the maximum power density of 3.89 W m-2 and chemical oxygen demand removal rate of 84% when 1000 mg L-1 aniline was degraded, which were about 1.88 and 2.8 times that of CC. The morphology of biofilm and 16s rRNA gene sequence analysis proved that the VN@CC bioanodes facilitated the enrichment of electroactive bacteria (99.02%) and increased the ratio of fast electron transfer in the extracellular electron transfer, thus enhancing the MFC performance of aniline degradation and power output. This work disclosed that it was feasible to increase the overall performance of MFC by enhancing the EET efficiency and presented valuable insights for future work.


Assuntos
Fontes de Energia Bioelétrica , Carbono , Vanádio , RNA Ribossômico 16S , Elétrons , Eletricidade , Fontes de Energia Bioelétrica/microbiologia , Eletrodos , Compostos de Anilina , Bactérias
20.
J Environ Manage ; 347: 119050, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37751664

RESUMO

Upgrading of waste nitrogen sources is considered as an important approach to promote sustainable development. In this study, a multifunctional bio-electrochemical system with three chambers was established, innovatively achieving 2.02 g/L in-situ microbial protein (MP) production via hydrogen-oxidizing bacteria (HOB) in the protein chamber (middle chamber), along with over 2.9 L CO2/(L·d) consumption rate. Also, 69% chemical oxygen demand was degraded by electrogenic bacteria in the anode chamber, resulting in the 394.67 J/L electricity generation. Focusing on the NH4+-N migration in the system, the current intensity contributed 4%-9% in the anode and protein chamber, whereas, the negative effect of -6.69% on contribution was shown in the cathode chamber. On the view of kinetics, NH4+-N migration in anode and cathode chambers was fitted well with Levenberg-Marquardt equation (R2 > 0.92), along with the well-matched results of HOB growth in the protein chamber based on Gompertz model (R2 > 0.99). Further evaluating MPs produced by HOB, 0.45 g/L essential amino acids was detected, showing the better amino acid profile than fish and soybean. Multifunctional bio-electrochemical system revealed the economic potential of producing 6.69 €/m3 wastewater according to a simplified economic evaluation.


Assuntos
Fontes de Energia Bioelétrica , Animais , Fontes de Energia Bioelétrica/microbiologia , Nitrogênio/metabolismo , Eletricidade , Águas Residuárias , Bactérias/metabolismo , Hidrogênio , Eletrodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...